

XRTC Use of Fault Injection to Simulate Upsets in Reconfigurable FPGAs

Gary Swift, Chen Wei Tseng, and Gregory Miller, Xilinx, Inc., Gregory R. Allen, Jet Propulsion Laboratory / Caltech, and Heather Quinn, Los Alamos National Laboratory

Overview

- Introduction Reconfigurable FPGAs
 - Design-Level vs. Configuration-Level
 - Radiation Test Consortium (XRTC)
- XRTC Beam Tests Methodology and Results
- Verifying Redundant Designs
- XRTC Fault Injector
- Lessons Learned So Far
- Future Directions

Introducing Virtex-4QV FPGAs

- Space-Grade Reconfigurable Family of Four
 - Guaranteed 300 krad(Si) and Latchup Immune
 - Bigger and More Powerful = More Complex
- Design-Level vs. Configuration Level
 - Triple Modular Redundancy XTMR
 - Resides in Design-Level Providing Upset Robustness
 - Protects Both Levels, but many more Configuration Upsets
 - Errors only on statistically "unlucky" coincident upsets
 - In two domains, same voted segment
 - During single scrub cycle (fraction of a second)
 - SRL16s, LUTROM, and LUTRAM Cross Levels
 - Formerly forbidden, new Virtex-4 feature allows their use

XRTC Beam Tests

- Basic Philosophy: Continuous Monitoring with In-Beam Strip Charts of:
 - Design Functionality Configuration Upsets Host **FuncMon** Counter/ **FPGA Buffer** Computer **BEAM** DUT ConfigMon Host Counter/ **FPGA** Buffer Computer Also Power and Temperature

Mature Test Methods & Apparatus

G.Swift et al., page 5

XRTC Beam Tests

Dynamic & Mitigation Campaigns Underway

XRTC Results – Space Upset Rates

- SEFI Rate is about one per century
- Unprotected Designs: a few upsets per day in GEO
- Mitigation makes these upset negligible
- Robustness at one error per century (SEFI Rate) with:
 - Design-Level: Triple Modular Redundancy
 - Assures no single-point of failure
 - Config-Level: Configuration Management
 - Prevents upset accumulation (transparent to design operation)
 - SEFI detection logic triggers reconfiguration (intrusive)

The TMR Verification Problem

- "Working" TMR may actually be broken
 - Stuck-at faults
 - Domain criss-crossing
- In the pathological case of only two working domains, a design's error cross-section is double!

The TMR Verification Problem

- Benchtop smoke test for three-leg functionality
- In-beam tri-flux test (expensive and non-specific)
 - Probability of a system error is approximately proportional to the square of upsets per scrub cycle

• Fault Injection (again)

XRTC Fault Injector

Requirements

- Configuration-level Fault Injector (or Upset Simulator)
- Speed and ease of comprehensive single-bit injection
- Kernel command set allows any middle-ware approach
 - Either hardware or software generated commands
- No impact on DUT designs
- Minimum impact on FuncMon design
 - Only need to add-on error signalling to ConfigMon
 - Introduce an easy-to-adapt template for FuncMon add-on

XRTC Fault Injector

Same apparatus as for beam testing

- Leverage ConfigMon functionality without breaking it
- Kernel is add-on to ConfigMon
- First priority Inject as fast as possible
 - Saves time by skipping intermediate "clean" frame
- Requires three- way coordination
 - Injector hands off to FuncMon after injecting fault
 - FuncMon tests functionality and reports results
 - Certain results cause ConfigMon to scrub or re-configure
- Scripting of kernel commands was natural addition

Fault Injection Lessons So Far

- Very useful to designers and beam testers
- Found 9 SelectMAP SEFI bits
- Found an I/O Test Bit on certain pairs of I/Os
- Many problems trace to state machine implementation
 - Modern synthesis tools may "optimize" in bad ways
 - Trimming "extra" states
 - Changing the type of state machine
- Still working out complications
 - Half-latches give inconsistent results
 - Not all detected single faults are "real"
 - Other inconsistencies being worked

Future Directions

- Near-term Replace and augment beam tests
 - Simulate tri-flux test
 - Simulate multi-bit upsets (MBUs)
 - Limitations of in-beam testing for robust TMR
 - Beam Time Required is Expensive
 - No Help with Locating of Problem Areas
- Longer-term Expand to Flight Design Qual
 May require expanded test platform

Backup Material

- Virtex-4QV Devices and Features
- Space Upset Rate Examples
- Photos of XRTC Apparatus In Use

Virtex-4QV Devices

Architectural Features

	Description	XQR4V SX55	XQR4V FX60	XQR4V FX140	XQR4V LX200
CFG*	Configuration Bits* (millions)	15.4	14.5	34.5	43.0
BRAM	Block Memory Bits	5,898,240	4,276,224	10,174,464	6,193,152
LOGIC	Slices (2 Lookup Tables/slice)	24,576	25,280	63,168	89,088
DSP**	18x18 MACs**	512	128	192	96
PPC	PowerPC405 Processors	-	2	2	-
DCM	Clock Managers	12	12	20	12
MGT***	High-speed Transceivers***	-	N/A	N/A	-
IOBs	Input/Output Blocks	640	576	896	960

* Only real memory cells in the Configuration Bit Stream are counted here (not counting BRAM)

** MAC=multiply-and-accumulate block for digital signal processing (DSP)

*** MGTs are not supported for Virtex-4QV devices

Example Space Upset Rates

Configuration Cells

Orbit	Altitude (km)	Incl*	XQR4V					
			SX55	FX60	FX140	LX200	HI%	
LEO	400	51.6°	0.73	0.69	1.61	2.03	69	
	800	22.0°	7.56	7.12	16.7	21.1	2	
POLA	R 833	98.7°	6.02	5.67	13.3	16.8	22	
MEO	1200	65.0°	23.3	21.9	51.6	65.1	5	
GEO	36,000	0°	4.28	4.03	9.5	11.9	94	
* Incl = Inclination HI% = fraction from heavy ions								

Example Space Upset Rates

BRAM Cells

Orbit	Altitude (km)	Incl*	XQR4V					
			SX55	FX60	FX140	LX200	HI%	
LEO	400	51.6°	0.72	0.52	1.24	0.75	84	
	800	22.0°	4.05	2.94	6.99	4.25	5	
POLA	R 833	98.7°	4.00	2.90	6.90	4.20	37	
MEO	1200	65.0°	13.3	9.63	22.9	13.9	10	
GEO	36,000	0°	4.49	3.26	7.75	4.71	98	
	* Incl = Inclination HI% = fraction from heavy ions							

Example Space Upset Rates

Orbit	Altitude (km)	Incl*	SEFIs					
			POR	GSIG	SMAP+	TOTAL	HI%	
LEO	400	51.6°	1225	2161	1500	515	58	
	800	22.0°	100	114	112	36	13	
POLA	R 833	98.7°	131	165	146	49	14	
MEO	1200	65.0°	32	37	35	11	3	
GEO	36,000	0°	225	560	290	103	91	
* Incl = Inclination $HI\%$ = fraction from heavy ions								

XRTC Apparatus

G.Swift et al., page 19

XRTC Apparatus

G.Swift et al., page 20

FaultMon GUI Addition

G.Swift et al., page 21

Three FaultMon GUI Controls

